
On the value of randomization∗
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1 Introduction

In most economic models, concave objectives on convex sets lead to non-
random choices. But asymmetric information and self-selection in principal
agent models introduce nonconvexities. Randomization may then be use-
ful when agents’ risk attitudes are correlated with other private individual
characteristics that are important to the principal. For instance a random
conscription draft with exemptions may select young men with the lowest
opportunity costs (Sabin (2008)), a fairy tale king evaluates how much a
young prince loves his daughter by putting forward a risky fight against a
dragoon, and Solomon could assess entrepreneurship in the light of a choice
involving some exposure to risk (Miller, Wagner, and Zeckauser (2010)).

The paper considers an abstract optimization program, with a finite num-
ber of constraints which define a nonconvex set of admissible choices in a finite
dimension Euclidean space. When choices are restricted to be determinis-
tic, a condition satisfied by a local optimum is that the second derivative
of the Lagrangian be negative definite on the tangent space to the active
constraints. Consider an associated random problem, where choices may
be random and the functions defining the objective and constraints are the
mathematical expectations of those of the deterministic program. The main
result of the paper is that the deterministic optimum, when associated with
a regular Hessian of the Lagrangian, can locally be improved upon through
a random deviation if and only if the Hessian has a positive eigenvalue. We
give a constructive method to build the improving deviation. The result is
applied to a number of economic models with asymmetric information.

Our first application is random taxation. In general the actual tax base
is not fully known by the tax authority. When auditing all fiscal reports
without error is extremely costly, some taxpayers will pay random taxes, due
to administrative errors or successful tax evasion, as in Cremer and Gah-
vari (1993), Cremer and Gahvari (1996), Slemrod (2007) and Slemrod and
Traxler (2010). However random taxation is not necessarily driven by the
cost of monitoring. A random tax system may be optimal even if exact
auditing can be implemented at no cost. Indeed, when taxpayers differ in
their attitudes towards risk, tax randomization enables the government to
separate agents who otherwise would have been treated equally. In Pestieau,
Possen, and Slutsky (2008) agents differ both in their earning abilities and
in their attitudes towards risks. A nonrandom income tax then pools agents
with the same taxable income, while randomization within income classes
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may allow to treat differently the taxpayers depending on their self-revealed
risk aversions (see the examples of 1991 and 1994 Italian tax amnesties for an
application of this kind of argument in Marchese and Privileggi (2004)). The
most general results on the usefulness of random taxation appear in Brito,
Hamilton, Slutsky, and Stiglitz (1995). These authors examine whether a
small random redistribution can locally improve social welfare at a nonran-
dom second-best allocation in a standard two good (consumption and labor)
Mirrlees economy. They obtain a necessary and sufficient condition (their
Theorem III) for the existence of a local random improvement. However,
their constructive tax reform methodology does not provide a description of
the mechanism at work, so that it is unclear how it could be extended to
more general economies. The condition, which bears on a weighted differ-
ence of the second derivatives of the agents’ utility functions, appears quite
intricate (Hellwig (2007)). Our technique provides a simple way of deriving
this condition and allows for a transparent economic interpretation.

We apply the analysis to the early principal-agent model by Weiss (1976)
and Stiglitz (1982), where randomization alleviates the incentive constraints
faced by the regulator. Consider an economy with two types of agents: the
first ones are skilled and display a high level of risk aversion, whereas the
second ones are unskilled and have a lower level of risk aversion. Assume
that the government would like to redistribute welfare from the skilled (rich)
agents towards the unskilled (poor) agents. If neither skills nor risk aversions
are publicly observed, the available information puts strong limits on the
scope of redistribution: the skilled agents would pretend to be unskilled if
they faced too high a tax. A random tax on the unskilled workers may then
be part of the optimal second-best tax policy: the risk averse skilled types are
discouraged to pretend being unskilled, which yields a social gain possibly
overcoming the efficiency loss due to the government creating risk bearing on
the unskilled. In this example, random taxation can be optimal when skill
and risk aversion are positively correlated. Indeed randomized redistribution
can only be useful when the agents that the government wants to favor have
the lowest risk aversion (Hellwig (2007)).

Our second application concerns discrimination strategies through differ-
ential risk exposure. Customers often buy goods and services whose quality
and/or price depend on future contingencies. Quality of a journey is random
when strikes, equipment malfunction or unavailable aircrafts make airline not
fully reliable. Online travel intermediaries offer non-refundable ‘opaque’ low
price hotel rooms in which buyers specify some characteristics such as dates
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or city, but other hotel properties are revealed after payment has been made.
Both quality and price may be random when firms use overselling or over-
booking combined with consolation rewards. Risk averse customers facing
such alternatives will usually seek some form of insurance. Firms can exploit
differences in the risk aversion of their customers by a suitable design of risk
exposure. Airline companies thus offer high price tickets ensuring against
delays business men who want to be on time.

Following Maskin and Riley (1984), in a Mussa and Rosen (1978) setup,
our mathematical result yields the conditions under which a monopolist fac-
ing customers with different risk tolerances can relax some of the incentive
constraints by randomizing the quality of service. In the airline case, expo-
sure to risk discourages business men to buy second class tickets, and thus
allows to extract more surplus.

The paper is organized as follows. Section 2 presents the mathematical
properties that underlie the paper. Then Section 3 applies the results to a
general framework with adverse selection, showing the role of the agents risk
aversions. In Section 4 a simple taxation example with two-type of agents,
disabled vs. able agents, serves to give a full illustration of the argument.
Finally Section 5 shows how the optimal contracts set by a discriminating
monopolist may involve randomization.

2 A mathematical result

Consider the following constrained optimization problem: max
x

f(x)

gn(x) ≥ 0, n = 1, . . . , N

where x is in RM . The functions f(·) and gn(·), n = 1, . . . , N , are twice
continuously differentiable. We do not impose convexity restrictions on the
objective f(·), nor on the constraints gn(·). Although the above problem
only involves inequality constraints, all our results would apply if there were
also equality constraints. In second-best problems the objective is typically
concave in x, while the incentive constraints may define a set which is not
convex. We shall refer to the above program as the deterministic problem.
The associated Lagrangian L(x, λ) is the function f(x) + λ′g(x), where λ is
a vector of RN

+ .
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Some of the results that follow require that the constraints be qualified
at the point we consider. The nth constraint is active at some point x of the
domain when gn(x) = 0. The constraints are qualified at x when the gradient
vectors ∇gn(x) of the active constraints at x are linearly independent.

The following property is drawn from Simon and Blume (1994), Th. 18.4
and 19.8.

Theorem 1. Let x∗ be an interior local maximum of the deterministic prob-
lem where the constraints are qualified.

1. There exists λ∗ ≥ 0 such that ∇xL(x∗, λ∗) = 0, and the complementary
slackness conditions λ∗ngn(x∗) = 0 hold for all n.

2. The Hessian ∇2
xL(x∗, λ∗) is negative semi-definite on the tangent space

to the active constraints at x∗, i.e., x′∇2
xL(x∗, λ∗)x ≤ 0 for all x such

that ∇gn(x∗)′x = 0 for all constraints n with gn(x∗) = 0.

Let x∗ in RM be a point that satisfies the first order conditions given
in part 1 of Theorem 1. We prove a converse to Theorem 1. Suppose that
the condition given in part 2 of Theorem 1 is not satisfied in the following
sense: there is a direction x+ in the tangent space to the active constraints
such that x+′∇2

xL(x∗, λ∗)x+ > 0. We are interested in the feasible deviations
which improve the objective in this circumstance. A deterministic deviation
from x∗ is a continuous function h(t) from [0, 1] into RM such that h(0) = 0
and

gn(x∗ + h(t)) = gn(x∗) = 0 (1)

for all n such that gn(x∗) = 0.

Theorem 2. Let x∗ be a point where the constraints are qualified and the
first order conditions of Theorem 1.1 are satisfied. Suppose that there is a
direction x+ in the tangent space to the active constraints such that

x+′∇2
xL(x∗, λ∗)x+ > 0.

Then there exists a deterministic deviation h(t) = tx+ + β(t) satisfying

∇gn(x∗)′β(t) +
1

2
t2x+′∇2gn(x∗)′x+ = o(t2),

for all the active constraints n with gn(x∗) = 0, such that f(x∗+h(t)) > f(x∗)
for small enough t different from 0.
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Consider now the following maximization problem: max
x̃

Ef(x̃)

Egn(x̃) ≥ 0, n = 1, . . . , N

where x̃ is a random variable with values in RM , such that the mathematical
expectations of f(x̃) and the gn(x̃), n = 1, . . . , n are well defined. We shall
refer to this program as the random problem.

Let x∗ be a point in RM which satisfies the constraints. A random devi-
ation h̃(t) from x∗ is an application from [0, 1] into the random variables in
RM which satisfies

Egn(x∗ + h̃(t)) = gn(x∗) = 0, (2)

for all active constraints, such that h̃(0) = 0 and the diameter of the support
of h̃(t) is a continuous function of t. Then we have:

Theorem 3. Let x∗ be a point where the constraints are qualified, the first
order conditions of Theorem 1.1 are satisfied, and the Hessian ∇2

xL(x∗, λ∗)
is of full rank.1

1. If ∇2
xL(x∗, λ∗) is negative definite, x∗ is a local maximum of the random

problem: there exists an open neighborhood V (x∗) of x∗ in RM such that

f(x∗) > Ef(x̃)

for all random variables x̃, x̃ 6= x∗, with support contained in V (x∗)
such that Egn(x̃) = gn(x∗) = 0 for the active constraints.

2. Suppose that ∇2
xL(x∗, λ∗) has a positive eigenvalue. To any vector x+

such that x+′∇2
xL(x∗, λ∗)x+ > 0, one can associate a random deviation

h̃(t) equal to tx+ + β(t) and to −tx+ + β(t) with equal probabilities
satisfying

∇gn(x∗)′β(t) +
1

2
t2x+′∇2gn(x∗)x+ = o(t2),

for all the active constraints, such that Ef(x∗+ h̃(t)) > f(x∗) for small
enough t different from 0.

1This last assumption is discussed in Remark 2 below.
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Theorems 1 to 3 provide a detailed picture of the local properties of
a solution x∗ to the first order conditions of the deterministic constrained
optimization problem. From Theorem 1, if x∗ cannot be improved upon
by deterministic moves in the constrained set, the second derivative of the
Lagrangian is semi negative definite on the tangent plan to the active con-
straints. Conversely, from Theorem 2, if there exists a direction in the tan-
gent plan along which the Hessian of the Lagrangian is strictly positive, x∗

is not a local optimum of the deterministic problem, and there are local de-
terministic deviations in the constrained set which yield a higher value of
the objective. Theorems 1 and 2 do not tell us anything on the behavior of
the second derivative of the Lagrangian out of the tangent plan to the active
constraints, indeed a region which is forbidden territory to the deterministic
problem. Our contribution in this respect is Theorem 3. The argument is
constructive. It shows that any direction along which the Hessian of the
Lagrangian is positive, belonging or not to the tangent plan to the active
constraints, allows to build an improving random deviation. If the number
of active constraints is Na, the tangent plan to the active constraints has
dimension M − Na and its complement of dimension Na is the size of the
space in which the second derivative of the Lagrangian at a local determin-
istic optimum may be positive and generate improving random deviations.

Corollary 1. A necessary condition for a deterministic x∗ to be a local op-
timum of the random problem is that the second derivative of the Lagrangian
at x∗ be negative semi definite.

Remark 1. All the above theorems assume qualified constraints. This allows
to compute the deterministic component β(t) of the deviation through the
implicit function theorem so that all the active constraints are exactly satis-
fied. In some economic problems, the constraints are not qualified. This for
instance happens in the Lerner redistribution problem studied by Pestieau,
Possen, and Slutsky (2008), where a fixed quantity of a single good must
be shared between a finite number of agents whose characteristics are not
publicly observed. Appendix B shows how our arguments can be adapted to
the case where the constraints are not qualified. When the number of active
constraints is greater than the number M of components of β(t), one can
sometimes consider a subset of constraints and proceed as in the qualified
case, making sure ex post that all the constraints are satisfied.
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Remark 2. Theorem 3 is shown under the assumption that the Hessian of
the Lagrangian is of full rank. In practice this restriction may fail to hold in
two different circumstances:

1. The Hessian may be linear in some directions, with all derivatives of
order two and larger being equal to zero on these directions in a neigh-
bourhood of x∗. Unconstrained maximization of a linear function im-
plies that at the optimum the function is zero, and a number of variables
(equal to the number of directions) can be solved for and eliminated
from the problem. Generically the Hessian of the transformed system
is of full rank and Theorem 3 then can be applied.

2. The Hessian is not of full rank, but the function is not locally linear,
with some derivative of order larger than 2 not zero in the directions
along which the Hessian is null. This is a non generic case, which is
not covered by our analysis.

3 A general adverse selection problem

We apply the results of the previous section to a general principal agent setup.
The principal faces a continuum of agents of different types i, i = 1, . . . , I,
with whom she contracts. A deterministic contract is a K dimensional vector
z. When a type i agent chooses contract z, he gets utility vi(z) while the
principal receives ui(z). The functions ui and vi are increasing and concave
von Neumann Morgenstern utility indices, and we allow for ex ante random
contracts. The ex ante utility of a type i agent receiving a random contract z̃
is Evi(z̃), while that of the principal is Eui(z̃). His type is private information
to the agent. The principal knows the distribution of types in the population
but does not observe individual types.

Under the revelation principle, the principal chooses a menu of random
contracts (z̃i), i = 1, . . . , I, solution to the program P̃

max
I∑
i=1

niEui(z̃i)

subject to individual rationality constraints

Evi(z̃i) ≥ v̄i for all i, (pi)
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and incentive constraints

Evi(z̃i) ≥ Evi(z̃j) for all i and all j. (λij)

The incentive constraints (λij) make sure that when the principal an-
nounces a menu of contracts (z̃i) type i agents voluntarily choose the transfer
z̃i designed for them. In the examples that we analyze below, they are crucial
in generating nonconvexities, through the presence of the utility of the other
agents choices on the right hand side of the constraints. On the other hand
the individual rationality constraints are not essential and could be replaced
with other sorts of constraints, such as feasibility requirements.

Example 1. Monopoly regulation. The principal is a regulator observing the
production q of a type i firm whose cost function Ci(q) is private information.
A contract z specifies a transfer t and a production level q. When a type
i firm chooses a contract z = (t, q), its profit is vi(z) = t − Ci(q) while the
utility of the regulator is the social surplus ui(z) = S(q)−Ci(q)− λt, where
S(q) represents consumers surplus and λ is the (given) social cost of public
funds. A random contract z̃i designed for firm i consists of a random transfer
t̃i and/or a random production q̃i. The regulator’s problem is P̃ , where v̄i is
the profit of a type i firm which receives zero transfer and does not produce,
v̄i = vi(0, 0). �

Example 2. Insurer as a monopolist. The probability pi of having an
accident for type i agents is private information. In case of accident the
wealth w of the agent is reduced by an amount `. The insurance company
offers a set of contracts z consisting of a premium q and a reimbursement r
in case of accident. The expected profit realized by the insurer from a type
i agent is ui(z) = q − pir when this agent chooses contract z. The expected
utility of such an agent is vi(z) = (1 − pi)ϕ(w − q) + piϕ(w − ` + r − q),
where the utility index ϕ is increasing and concave. A random contract z̃i
designed for type i agents specifies a random premium q̃i and/or a random
coverage r̃i in case of accident. The most realistic case may be the one where
agents pay a deterministic premium but additional clauses actually restrict
circumstances in which reimbursement is made in case of accident, implying
random coverage. The insurer problem is P̃ with v̄i being the expected utility
of an uninsured type i agent vi(0, 0). �

Example 3. Optimal taxation. Type i agents are consumers-workers whose
preferences are represented by the utility function vi(c, y) when they consume
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c units of a consumption good and they earn before tax income y. There is
a linear technology which transforms labor into goods. A type i agent who
works ` hours earns y = θi`, where θi is her labor productivity. Both prefer-
ences and productivity are private information to the agent. The government
observes individual income and consumption, but not separately labor sup-
ply and productivity. A weighted utilitarian government redistributes income
across agents by offering a menu of contracts zi = (ci, yi) for all types i. Let
ai be the social weight of a type i agent. The contribution of type i agents
to social welfare is ui(zi) = aivi(ci, yi). A random contract z̃i specifies a
random before tax income ỹi and/or a random after tax income c̃i (which
coincides with consumption). It seems more plausible that the before-tax in-
come remains deterministic, while after-tax income is random because there
are random administration errors, tax evasion with non comprehensive au-
dits, or voluntary random perturbations in the spirit of ordeal mechanisms.
In this setup, individual rationality constraints are irrelevant, but there is
a feasibility condition making sure that all that is consumed has been pro-
duced. �

The Lagrangian functions associated with the general programs are re-
spectively

L =
I∑
i=1

(
niui(zi) + pi (vi(zi)− v̄i) +

∑
j 6=i

λij (vi(zi)− vi(zj))

)
(3)

for the deterministic program denoted P , and

L̃ =
I∑
i=1

(
niEui(z̃i) + pi (Evi(z̃i)− v̄i) +

∑
j 6=i

λij (Evi(z̃i)− Evi(z̃j))

)
(4)

for P̃ .
A deterministic optimum satisfies the necessary first-order conditions

given in Theorem 1.1. The second-order conditions in Theorem 1.2 involve
the Hessian H of the Lagrangian evaluated at this point, which must be semi
negative definite on the tangent plan to the active constraints. In the current
class of models the Hessian takes a specific form. Indeed H is a IK × IK
symmetric matrix whose ith diagonal block is the K ×K matrix

Hi = ni∇2ui(zi) +

(∑
j 6=i

λij + pi

)
∇2vi(zi)−

∑
j 6=i

λji∇2vj(zi) (5)
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while all off diagonal blocks are zero.
The matrix Hi is negative definite when the sum of the first two terms,

a negative definite matrix from the concavity of utilities, dominates the last
sum which is positive definite. This happens in a first-best optimum, i.e., the
profile (zi) satisfies the first-order conditions and generates no envy is a local
optimum. When a type i agent is not envied, the multipliers λji are 0 for all
j 6= i, so that the matrix Hi defined in (5) is negative definite by concavity
of the utility function. Therefore the Hessian H is negative definite when no
type of agents is envied.

The Hessian H is likely to remain negative definite when the optimum is
not far from the first-best, so that the incentive constraints are not strongly
binding (the Lagrangian multipliers associated with these constraints are
small). Conversely, for Hi to have a positive eigenvalue, at least one of
the incentive constraint must have a large multiplier λji and it helps if the
corresponding agent j is more risk averse (that is, have a larger in absolute
value second derivative of her utility) than i. Of course all these quantities
are determined endogenously and must be compatible with optimality of the
deterministic program. We shall relate them to the fundamental parameters
of the economy in some of the examples below.

A nonconcave Lagrangian does not necessarily prevent from local opti-
mality: from Theorem 1.2, H must be negative definite on the tangent space
to the active constraints. This space has dimension IK − Na when there
are Na binding incentive constraints. Hence the IK dimensional square ma-
trix H has at least IK − Na negative eigenvalues at a local maximum. It
may consequently have at most Na positive eigenvalues. Of course, for The-
orem 1.2 to hold when H has Na positive eigenvalues, the Na dimensional
positive eigenspace of H and the IK −Na dimensional tangent space to the
active constraints must have no intersection. The second-order conditions
leave room for positive eigenvalues in the Na directions that do not belong to
the tangent plane to the active constraints at this optimum. This property
can be exploited to yield a welfare improvement through random transfers.

The intuition of the argument is as follows. Consider a local maximum
(zi) among the nonrandom contracts, and small deviations (dz̃i) such that
all the active constraints at the nonrandom optimum remain binding at the
new point (zi + dz̃i). The change in the objective is therefore

I∑
i=1

ni(Eui(zi + dz̃i)− ui(zi)) = L̃ − L, (6)
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where L̃ is the Lagrangian defined by (4) and evaluated at the final random
contract, while L is the Lagrangian defined by (3) and evaluated at the initial
deterministic optimum.

Since the initial deterministic optimum satisfies the first-order conditions
in Theorem 1.1, the reform yields at most a second-order change to the
objective,

L̃ − L =
1

2
E

I∑
i=1

(dz̃i)
′Hi(dz̃i) + o(||dz̃i||2). (7)

It turns out that one can build deviations dz̃ that increase the objective of
the principal when one of the matrices (Hi), say Hj, has a positive eigenvalue.

The deviation involves two parts: a deterministic part β(t) chosen so that
the binding constraints of the program at the reference point stay binding
along the deviation, and for type j agents a lottery with zero expected value
in the direction of some K dimensional eigenvector x+j associated with the
positive eigenvalue of Hj. The deviation is parameterized with a small posi-
tive scalar t which measures the scale of the change along the direction x+j .
For type j the deviation takes two values

dz̃1j = tx+j + βj(t), dz̃2j = −tx+j + βj(t),

drawn independently with equal probability. The proof of Theorem 3 shows
that β(t) is of the order of t2 at most. For t close enough to 0, it therefore is
negligible in (7). Thus (6) and (7) yield

I∑
i=1

ni(Eui(zi + dz̃i)− ui(zi)) =
1

2
t2x+′j Hjx

+
j + o(t2) > 0.

This yields the following result:

Proposition 1. Consider a nonrandom optimum among the nonrandom con-
tracts, which satisfies the conditions laid down in Theorem 1. Then social
welfare can be improved upon through local random contracts if the Hessian
H of the nonrandom Lagrangian has at least one positive eigenvalue.

By Theorem 3.1, local randomization deteriorates the objective of the
principal when all the eigenvalues of the Hessian H are negative. The con-
dition for the existence of valuable randomizations given in Proposition 1 is
necessary and sufficient when H is regular, i.e., all the eigenvalues of H differ
from 0.
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4 A taxation example

We particularize the abstract model of the previous section to a simple version
of the taxation example described in section 3. There are two types of agents
in the economy, n1 agents of type 1 and n2 agents of type 2, n1 + n2 = 1.
Type 1 agents are ‘disabled’ and do not supply any labor. They consume
c1 units of the consumption good, yielding a utility level u1(c1), where u1 is
increasing and concave. Type 2 agents consume c2 and produce y2 units of
good. Their preferences are represented by u2(c2)−v2(y2), with u2 increasing
and concave, v2(y2) increasing, convex, and v2(0) = 0.

Given its redistributive tastes, parameterized by the positive numbers
(a1, a2), a government knowing the agents types chooses a deterministic al-
location (c1, c2, y2) which maximizes

a1n1u1(c1) + a2n2 [u2(c2)− v2(y2)]

subject to
n1c1 + n2c2 ≤ n2y2. (8)

The first-best allocation solution to this problem satisfies the two first order
conditions a1u

′
1(c1) = a2u

′
2(c2) and u′2(c2) = v′2(y2). It varies continuously

with the ratio a2/a1 and a simple manipulation of the the first order and
feasibility conditions shows that when a2/a1 increases, type 2 benefits both
through a higher consumption c2 and a lower labor supply y2, while type 1
looses with a smaller c1.

Disabled agents cannot work, and therefore cannot imitate the workers.
To study the second best optimum, there is a single incentive constraint to
consider: the type 2 workers must not want to fake type 1 disability, i.e.

u2(c2)− v2(y2)− u2(c1) ≥ 0.

Note that the left hand side of the above inequality, evaluated at the first
best allocation is increasing in a2/a1: there is a threshold a such that for all
a2/a1 > a, the incentive constraint does not bind and the first and second
best coincide. On the other hand, for a2/a1 < a the second-best allocation
differs from the first-best. It is solution of the system formed by (8), the
binding incentive constraint

u2(c2)− v2(y2) = u2(c1), (9)
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and the first-order condition u′2(c2) = v′2(y2).
2 Remark that in this specific

example the second-best allocation (c∗1, c
∗
2, y
∗
2) does not depend on the social

weights (a1, a2), whenever it differs from the first-best.
We can now apply the techniques developed earlier in the paper to find

the cases where a small random deviation from the deterministic second-best
may increase the government objective. The Lagrangian of the deterministic
problem is

L = a1n1u1(c1) + a2n2 [u2(c2)− v2(y2)]
+ ρ [n2y2 − n1c1 − n2c2] + λ [u2(c2)− v2(y2)− u2(c1)] ,

with Hessian

H =

 a1n1u
′′
1(c1)− λu′′2(c1) 0 0

0 (a2n2 + λ)u′′2(c2) 0
0 0 − (a2n2 + λ) v′′2(y2)

 .

It follows from Proposition 1 that there is a profitable local random devi-
ation if and only if the Hessian has a positive eigenvalue, that is a1n1u

′′
1(c1)−

λu′′2(c1) > 0.

Proposition 2. A necessary and sufficient condition for the existence of an
open interval of values of social weights where the deterministic second-best
optimum is locally dominated by a random allocation is

rA1 (c∗1)

rA2 (c∗2)

(
1 +

n1

n2

u′2(c
∗
2)

u′2(c
∗
1)

)
< 1. (10)

2One can check that the solution to this system is local maximum, using Theorem 1.2.
The tangent plane to the active constraints is(

−n1 −n2 n2

−u′2(c1) u′2(c2) −v′2(y2)

) dc1
dc2
dy2

 =

(
0
0

)
.

For all such deviations, it must be that

(
dc1 dc2 dy2

)
H

 dc1
dc2
dy2

 ≤ 0.

From the first-order conditions, there is no distortion at the top for type 2 agents, u′2(c2) =
v′2(y2). Therefore the only deviations (dc1, dc2, dy2) from the deterministic extremum in
the tangent plan to the constraints are proportional to (0, 1, 1). Since the sub-Hessian H2

corresponding to c2 and y2 is negative definite, any local extremum of the Lagrangian is
a local maximum.
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where rAi (c) = −u′′i (c)/u′i(c) is the coefficient of absolute risk aversion of
type i when consuming c.

Proof. Eliminating the multiplier ρ between the two first order conditions

∂L
∂c1

=
∂L
∂c2

= 0

yields the multiplier λ associated with the incentive constraint (9)[
u′2(c

∗
1)

n1

+
u′2(c

∗
2)

n2

]
λ = a1u

′
1(c
∗
1)− a2u′2(c∗2).

The positivity of the eigenvalue is equivalent to

a2
a1

u′2(c
∗
2)

u′1(c
∗
1)
< 1− rA1 (c∗1)

rA2 (c∗2)

(
1 +

n1

n2

u′2(c
∗
2)

u′2(c
∗
1)

)
,

which gives the desired result. �

Since the positive eigenvalue is associated with the eigenvector with all
weight on c1, the deviation can put randomness on the disability allowance
c1. For randomness to be worthwhile, (10) requires that type 2 be substan-
tially more risk averse than type 1. The domain of parameters a2/a1 with
improving local random deviation is larger all other things equal when the
proportion of type 1 agents is smaller, or when c∗2 is large relative to c∗1. Since
by (9) c∗2 is larger than c∗1, u

′
2(c
∗
2) ≤ u′2(c

∗
1), and a sufficient condition for (10)

to hold is
rA1 (c∗1) < n2r

A
2 (c∗2).

5 Discrimination through risk exposure

The general framework used in section 3 also applies to monopoly pricing
analyzed in Mussa and Rosen (1978) and Maskin and Riley (1984). The
principal is a monopolist producing a commodity in different qualities. The
unit cost c(q) of one good of quality q is increasing and convex, with c(0) = 0.
Each agent buys at most one good. A type i agent buying a quality q good
at price p has utility vi(θiq − p), with vi increasing and concave. Tastes
represented by vi and the valuation θi for the quality are private information.
By convention valuations increase with i, θi < θi+1 for all i ≤ I − 1.
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Prices and/or quality may be random. The problem of the seller is to
choose a profile (p̃i, q̃i), i = 1, . . . , I, which maximizes her expected revenue

I∑
i=1

niE[p̃i − c(q̃i)]

subject to participation constraints,

Evi(θiq̃i − p̃i) ≥ 0 for all i = 1, . . . , I,

and self-selection constraints,

Evi(θiq̃i − p̃i) ≥ Evi(θiq̃j − p̃j) for all i, j = 1, . . . , I.

5.1 Deterministic optimum

The study of the deterministic optimum builds on the results of Maskin
and Riley (1984) (see their Proposition 2) and Guesnerie and Seade (1982).
The specification of the utility functions is different here, but the argument
can be easily transposed. Indeed the single crossing condition, v′′qθ > 0, is
satisfied. Then, provided that quality increases with valuation, qi increases
with i, the individual rationality constraint of type 1 consumers (associated
with Lagrange multiplier λ1) and the local neighboring downward incentive
constraints are the only relevant constraints in the nonrandom problem. Let
λi be the Lagrange multiplier associated with the nonrandom self-selection
constraints vi(θiqi − pi) ≥ vi(θiqi−1 − pi−1) for all i > 1.

The Lagrangian is

L =
I∑
i=1

ni[pi − c(qi)] + λ1v1(θ1q1 − p1)

+
I∑
i=2

λi [vi(θiqi − pi)− vi(θiqi−1 − pi−1)] .

Differentiating the Lagrangian with respect to qi gives the first-order con-
dition

∂L
∂qi

= −nic′(qi) + λiθiv
′
i − λi+1θi+1v

′
i+1 = 0, (11)

where we use the convention λI+1 = 0. The first-order conditions with respect
to prices yield λiv

′
i = Ni for all i, where Ni is the fraction of the population
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with valuation θ at least equal to θi (this number is decreasing in i), Ni =∑I
j=i nj for i ≤ I and NI+1 has been set to zero. Therefore, (11) rewrites

nic
′(qi) = Niθi −Ni+1θi+1. (12)

We have neglected the non negativity and the monotonicity of qi in the above
program. For the solution obtained from (12) to be economically meaningful,
these properties have to be satisfied, which turns out to hold provided the
following Assumption is met.

Assumption 1. The following properties hold:

1. Niθi > Ni+1θi+1 for all i;

2. the sequence (Niθi −Ni+1θi+1) /ni is increasing with i;

3. the marginal cost of quality c′(q) is zero at the origin and goes to infinity
when q goes to infinity.

5.2 Random deviations

Under Assumption 1, the deterministic optimum is defined by a profile of
qualities satisfying (12) while prices are given by the I binding constraints.
To see whether random deviations from this deterministic optimum can be
profitable, we study the second derivative of the Lagrangian. Since λiv

′
i = Ni

for all i, the Hessian of the Lagrangian is a diagonal matrix whose ith diagonal
entry is

∂2L
∂q2i

= −nic′′(qi) + λiθ
2
i v
′′
i − λi+1θ

2
i+1v

′′
i+1

= −nic′′(qi)−Niθ
2
i r
A
i +Ni+1θ

2
i+1r

A
i+1,

where rAi is the coefficient of absolute risk aversion of type i at the determin-
istic optimum. Theorem 3 implies:

Proposition 3. Suppose that the Hessian is of full rank at the deterministic
optimum. Under Assumption 1, it is worthwhile to locally randomize the
quality designed for type i consumers if and only if

Ni+1θ
2
i+1r

A
i+1 > Niθ

2
i r
A
i + nic

′′(qi). (13)
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Condition (13) confirms some of the intuitions seen earlier in the taxation
example. From NI+1 = 0, it follows that it is never optimal to randomize
the quality offered to the highest type: this comes from the fact that no
other agents envy people at the top. The more convex the cost function, the
higher the right hand side of (13), and the more reluctant the seller will be to
randomize quality. The risk aversions of the consumers matter as expected.
It is never worthwhile to randomize the quality offered to risk neutral agents.

Remark 3. In the specification used by Mussa and Rosen (1978) or Maskin
and Riley (1984), the utility of type i consumers is separable and quasi-linear
in the price, v(qi, θi)− pi. Then the monopolist cannot increase its expected
profit with a local random deviation. To see this, recall that, by Theorem 1.2,
second-order conditions for a local maximum only involve deviations in the
tangent space to the I binding constraints. Since the consumers’ preferences
are separable, these constraints allow to derive all the I expected prices as
functions of the I qualities and to substitute them in the expression giving
the monopolist profit. One gets an unconstrained optimization problem with
respect to the qualities. It follows that at the deterministic optimum the
Hessian is negative definite for all quality deviations, and by Theorem 3
local randomness cannot be profitable.3
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Appendices

A Proofs of the mathematical statements of

Section 2

Proof of Theorem 3. We start with part 1. The mathematical expectation
of a Taylor expansion of L in a suitable neighborhood of x∗ is

EL(x̃, λ∗) = L(x∗, λ∗) +∇xL(x∗, λ∗)(Ex̃− x∗)

+
1

2
E(x̃− x∗)′∇2

xL(x, λ∗)(x̃− x∗),

where x is a point on the segment [x∗, x̃]. From part 1 of Theorem 1, the
second term on the right hand side is equal to zero. The third one is strictly
negative in the chosen neighborhood since ∇2

xL(x∗, λ) is negative definite by
assumption. Therefore, for x̃ 6= x∗,

L(x∗, λ∗) > EL(x̃, λ∗).

The active constraints at x∗ are satisfied at equality, while the inactive
constraints stay inactive in a suitable neighborhood of x∗. It follows that
λ∗′g(x∗) = λ∗′g(x̃) = 0, and consequently

f(x∗) > Ef(x̃).

We now prove part 2. By assumption ∇2
xL(x∗, λ) has one positive eigen-

value and the associated eigenvector is a suitable x+. From part 2 of The-
orem 1, note that x+ cannot belong to the tangent space to the active con-
straints, i.e., gn(x∗)′x+ 6= 0 for some n such that gn(x∗) = 0.

By (2) the deviations h̃(t) are such that Egn(x∗ + h̃(t)) = gn(x∗) for the
active constraints, i.e.

1

2
gn(x∗ + tx+ + β(t)) +

1

2
gn(x∗ − tx+ + β(t)) = gn(x∗). (14)
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We are going to show that there is a β(t) satisfying (14) which is at most
O(tz) for some z ≥ 2. If there are Na active constraints, (14) is a system of
Na equations in the unknown β(t). A Taylor expansion of (14) yields, for all
active constraints n,

∇gn(x∗)′β(t) +
1

4
(tx+ + β(t))′∇2gn(x∗)(tx+ + β(t))

+
1

4
(−tx+ + β(t))′∇2gn(x∗)(−tx+ + β(t)) = o(t2).

Since the constraints are qualified, the Na×M matrix of derivatives ∇gn(x∗)
of the active constraints is of full rank.

Since by assumption the constraints are qualified, the rank of this matrix
is Na. We fix M − Na components of β(t) at zero, so that the Na non zero
components of β(t) form a vector β̂(t) which can be solved for locally by
applying the implicit function theorem to the system made of the Na active
constraints. For each active constraint, let Gn be the 1 × Na subvector of
∇gn(x∗) associated with the components of β̂(t). From the implicit function
theorem, the function β̂(t), with β̂(0) = 0, is well defined and continuously
differentiable in a neighborhood of the origin. Since ∇gn(x∗)′β(t) = Gnβ̂(t),
the Taylor expansion of (14) can be rewritten as

Gnβ̂(t) +
1

2
t2x+′∇2gn(x∗)x+ +

1

2
β(t)′∇2gn(x∗)β(t) = o(t2),

for every n in Na. The expression in the left hand side of this equation is of
smaller order than t2 when t is in a neighborhood of the origin since β(t)±tx+
is at most O(t). Stacking up these Na equalities gives

Gβ̂(t) +
1

2
t2a+

1

2
b = o(t2), (15)

where a and b are two Na × 1 vectors,

a =


...

x+′∇2gn(x∗)x+

...

 , b =


...

β(t)′∇2gn(x∗)β(t)
...

 ,

and G is the (Na×Na) matrix obtained by stacking up the Na subvectors Gn

of the active constraints. From the qualification of the active constraints G
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is of full rank and invertible. Multiplying through by the inverse of G shows
that b can be neglected in (15). Indeed, t2a is O(tz) for some z ≥ 2, so that
β̂(t) is at most O(tz), and thus b is at most O(t2z). As a result, one gets

Gβ̂(t) +
1

2
t2a = o(t2), (16)

or equivalently, for all active constraint n,

∇gn(x∗)′β(t) +
1

2
t2x+′∇2gn(x∗)x+ = o(t2),

where the M − Na components of β(t) associated with inactive constraints
at x∗ are zero, and the Na remaining components of this vector are obtained
from (16). This is the expression given in the statement of Theorem 3 that
is satisfied by the deterministic component β(t) of the deviation.

Now, by the property (14) of the random deviation,

1

2
f(x∗ + tx+ + β(t)) +

1

2
f(x∗ − tx+ + β(t))− f(x∗)

=
1

2
L(x∗ + tx+ + β(t), λ∗) +

1

2
L(x∗ − tx+ + β(t), λ∗)− L(x∗, λ∗)

= ∇xL(x∗, λ∗)′β(t) +
1

2
t2x+′∇2

xL(x∗, λ∗)x+ +
1

2
β(t)′∇2

xL(x∗, λ∗)β(t) + o(t2).

Since x∗ is a local deterministic maximum, ∇xL(x∗, λ∗) = 0. Moreover, by
(16), β(t) = O(tz) at most, so that β(t)′∇2

xL(x∗, λ∗)β(t) is at most O(t2z).
As a result,

Ef(x∗ + h̃(t))− f(x∗) =
1

2
t2x+′∇2

xL(x∗, λ∗)x+ + o(t2) > 0, (17)

by the choice of x+.

Proof of Theorem 2. The deviation is deterministic, h(t) = tx+ + β(t),
and a Taylor expansion of (1) gives

∇gn(x∗)′β(t)+
1

2
t2x+′∇2gn(x∗)x++tx+′∇2gn(x∗)β(t)+

1

2
β(t)′∇2gn(x∗)β(t) = o(t2),

or[
∇gn(x∗)′ + tx+′∇2gn(x∗)

]
β(t)+

1

2
t2x+′∇2gn(x∗)x++

1

2
β(t)′∇2gn(x∗)β(t) = o(t2).
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From the qualification of constraints, we know that stacking up the vectors
∇gn(x∗)′ for the active constraints n gives a matrix of rank Na. As in the
proof of Theorem 3, we fix M −Na components of β(t) at zero, and denote
β̂(t) the Na non zero components, chosen so that the extracted matrix is
of full rank. For each active constraint, let Gn be the 1 × Na subvector of
∇gn(x∗) associated with the components of β̂(t) and Jn the 1×Na subvector
of x+′∇2gn(x∗) also associated with the non zero components of β. The
Taylor expansion becomes

[Gn + tJn]β̂(t) +
1

2
t2x+′∇2gn(x∗)x+ +

1

2
β(t)′∇2gn(x∗)β(t) = o(t2).

Let G and J be the Na×Na matrices obtained by stacking up the Gn and
Jn over the active constraints. By the qualification of constraints, G is of full
rank, so that G + tJ is invertible for small enough t. The second and third
terms on the left hand side are respectively O(tz) and O(t2z) at most for all
active constraints, where z ≥ 2. Therefore the terms β(t)′∇2gn(x∗)β(t) are
negligible, β̂(t) is at most O(tz), and the expression in the statement of the
Theorem holds.

Finally the expansion of L(x∗+ tx+ +β(t), λ∗)−L(x∗, λ∗) = f(x∗+ tx+ +
β(t))− f(x∗) yields

∇xL(x∗, λ∗)(tx+ + β(t)) +
1

2
t2x+′∇2

xL(x∗, λ∗)x+ + o(t2)

=
1

2
t2x+′∇2

xL(x∗, λ∗)x+ + o(t2) > 0,

which completes the proof.

B The Lerner case

When the number Na of active constraints at the deterministic optimum is
greater than the number M of nonzero components of the vector β(t), the
implicit function theorem does not apply and the argument in the proof of
Theorem 3 does not work. A possible way out however is to restrict attention
to a subset of n qualified constraints, and hope that the Na − n remaining
constraints are satisfied when one implements the random deviation exhibited
in Theorem 3.

In order to illustrate this point, let us consider the example of the redis-
tribution problem in a Lerner world studied by Pestieau, Possen, and Slutsky
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(2008). In this example, there are two agents, i = 1, 2, and one consumption
good. Utility of agent i when she consumes c units of the good is ui(c). Each
agent is initially endowed with y units of the good. The type i is not publicly
observed. Therefore, if the tax authority wants to allocate (nonrandomly) ci
units of the good to agent i, the two incentive constraints

u1(c1) ≥ u1(c2),

u2(c2) ≥ u2(c1),

must be met. In addition, feasibility requires

c1 + c2 ≤ 2y.

In this example, the vector (c1, c2) is two-dimensional, i.e., M = 2. Still, at
the nonrandom optimum, the three constraints hold at equality: incentive
compatibility actually requires c1 = c2 and feasibility implies c1 = c2 = y.

We can study the usefulness of randomization by adapting the argument
in the proof of Theorem 3. Assume that the tax authority only cares about
the welfare of agent 1. Random redistribution toward this agent, if possible,
is likely to be limited by the fact that agent 2 will mimic agent 1, when she
receives too much. Let us therefore restrict our attention to the following
subset of the active constraints at the nonrandom optimum:

u2(c2) = Eu2(c1)

and
Ec1 + c2 = y.

We shall verify ex post that the remaining constraint, u1(c2) ≤= Eu1(c1), is
indeed satisfied, with a Lagrange multiplier equal to 0. The corresponding
Lagrangian is

L = u1(c1) + λ [u2(c2)− u2(c1)] + ρ (y − c1 − c2) .

Its Hessian at the deterministic allocation c1 = c2 = y is

∇2L =

(
u′′1(y)− λu′′2(y) 0

0 λu′′2(y)

)
with from the first-order condition

λ =
1

2

u′1(y)

u′2(y)
.
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The eigenvalue λu′′2(y) is always negative. The other one is positive if and
only if

u′′1(y)

u′1(y)
>

1

2

u′′2(y)

u′2(y)
.

Let x+ = (1, 0)′ stand for the eigenvector associated with this eigenvalue.
Consider the lottery with the two outcomes tx+ +β(t) and −tx+ +β(t), each
one occurring with the same probability, and β(t) = (β1(t), β2(t))

′. The first
component of the two-dimensional vectors ±tx++β(t) gives the consumption
of agent 1, and the second the consumption of agent 2. For t close enough to
0, the vector β(t) is characterized by the active constraints as in Theorem 3:

Eu2(c1) = u2(c2),

Ec1 + c2 = 2y,

which become

1

2
[u2(y + t+ β1(t)) + u2(y − t+ β1(t))] = u2(y + β2(t)),

β1(t) + β2(t) = 0.

This yields

β1(t) = −β2(t) = −1

4
t2
u′′2(y)

u′2(y)
+ o(t2).

When the Hessian has a positive eigenvalue, this randomization increases the
welfare of agent 1:

Eu1(c1)−u1(y) = u′1(y)β1(t)+
1

2
u′′1(y)t2+o(t2) =

1

2
u′1(y)

[
u′′1(y)

u′1(y)
− 1

2

u′′2(y)

u′2(y)

]
t2+o(t2) > 0.

There remains to check that type 1 incentive constraint is satisfied. But
we have just seen that Eu1(c1) > u1(y) and since β2(t) is negative, c2 is
smaller than y. This completes the analysis of this variant of the Lerner
model.
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